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Abstract 

Recent theoretical results support that decreasing the number of free parameters in a neural network (i.e., 
weights) can improve generalization. The importance of these results has triggered the development of 
many approaches which try to determine an "appropriate" network size for a given problem. Although it 
has been demonstrated that most of the approaches manage to find small size networks which solve the 
problem at hand, it is quite remarkable that the generalization capabilities of these networks have not been 
explored thoroughly. In this paper, we propose the coupling of genetic algorithms and weight pruning 
with the objective of both reducing network size and improving generalization. The innovation of our ap- 
proach relies on the use of a fitness function which uses an adaptive parameter to encourage the reproduc- 
tion of networks having good generalization performance and a relatively small size. 

1. Introduction 
Network size in the case of layered, feed- 

forward, neural networks depends on the number 
of layers and the number of nodes per layer but 
usually is expressed in terms of the number of 
connections in the network. In general, network 
size affects network complexity, and learning 
time, but most importantly, it affects the generali- 
zation capabilities of the network; that is, its abil- 
ity to produce accurate results on data outside its 
training set [1],[2]. A network having a structure 
simpler than necessary cannot give good results 
even for patterns included in its training set. On 
the other hand, a more complicated than neces- 
sary structure, "overfits" the training data, that is, 
it performs nicely on patterns included in the 
training set but performs very poorly on unk- 
nown patterns. 

Major emphasis has been given in the last 
few years in the development of techniques 
which try to improve generalization by modifying 
not only the connection weights but also the net- 
work structure as training proceeds. These tech- 
niques can be divided into three main categories: 
pruning, [3]-[7], constructive [8],[9], and weight 
sharing [lO],[ll]. Although one of the most 

important reason for modifying the network 
architecture is to improve generalization, most of 
the existing approaches have not emphasized this 
issue. In most cases, the feasibility of an 
approach is illustrated showing results on net- 
work size reduction and convergence speed, 
while less or no emphasis has been given to the 
generalization issue [3]- [5], [SI [9]. Actually, in 
some studies where generalization has been 
addressed, improvements were observed using 
only artificial data [6],[12],[13], while no 
significant generalization improvement or even 
worst generalization has been reported in other 
studies where real data were used [14]-[16]. In 
this paper, our focus is on the area of weight 
pruning techniques. 

Weight pruning techniques are very sensi- 
tive to the selection of certain parameters which 
determine when pruning should start and when it 
should stop. If pruning starts too early, the net- 
work might not be able to learn the desired map- 
ping. On the other hand, starting pruning late 
might waste training time and the network might 
start memorizing the training set. Also, if pruning 
stops early, we might not be able to sufficiently 
prune the network and this might lead to poor 
generalization again. Finally, if pruning does not 
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stop at the right time, then the network might be 
able to fit the training data satisfactorily, but it 
might not be: able to generalize well. Usually, 
determining appropriate pruning parameter values 
to control the: beginning and end of the pruning 
process is done by trial and error. 

In this paper, we propose the coupling of 
genetic algorithms [ 171 and weight pruning. 
Research on combining genetic algorithms and 
neural networks has attracted a lot of attention 
lately [18]. T,he weight elimination technique [7], 
a representative weight pruning technique and the 
most general of weight decay approaches has 
been chosen 1.0 be coupled with the genetic algo- 
rithm. The purpose is not only to prune oversized 
networks but also to improve generalization and 
to make pruning less sensitive to the selection of 
the pruning parameter values. The innovation of 
our approach relies on the use of a fitness func- 
tion which takes into consideration both the net- 
work size and the generalization performance. 
During the generation of new genetic popula- 
tions, an adaptive parameter weighs appropriately 
the importance of network size versus generaliza- 
tion, encouraging the reproduction of networks 
having good generalization capabilities and small 
size. 

The organization of the paper is as follows: 
Section 2 reviews the weight elimination tech- 
nique. Sectioin 3 discusses the genetic algorithm 
approach. Th.e databases used and preliminary 
experimental results obtained are described in 
Section 4. Finally, our conclusions are given in 
Section 5. 

2. Determining network size using weight 
elimination 

Weight elimination minimizes the following 
modified error function: 

wij "/w 0" 
(targetk - oNutputk l2 i- kwE E 

k i 7 j  1 + wi;2/w: 

The first term is the original error function 

second term with respect to the first. The choice 
of wo determines the number and magnitude of 
weights. If wo is chosen to be small, the algo- 
rithm converges to a solution having a few large 
weights. On the other hand, if wo is chosen to be 
large, a solution is obtained having many small 
weights. 

An important issue to be addressed is when 
to start pruning. Specifically, we start removing 
connections only when the generalization perfor- 
mance of the network is satisfactory. A common 
way of testing generalization, is using cross- 
validation and this the approach used here [l]. 
Defining the generalization performance G ,  as 
the ratio of correctly classified patterns from the 
validation set over the total number of patterns in 
the validation set, we start removing connections 
when GVal r T ,  where T is a threshold to be 
defined. A weight wi; is removed only if 

Another important issue to be addressed is 
when to stop training and as a consequence, 
pruning. A robust way is using the average gen- 
eralization error A,  defined as follows: 

IW,l < IWJ. 

where n denotes the epoch at which A,, is com- 
puted, A. is set to 1, and y is a constant, to be 
chosen relatively close to 1. If A,, keeps decreas- 
ing, we continue training and pruning, otherwise, 
we stop. The update of Gval and A, takes place 
every epoch. 

Weigend et. al. [7] have proposed an adap- 
tive procedure for determining the parameter AWE. 
Initially, Am is set to zero. Then, it increases, 
decreases, or stays the same according to certain 
criteria. We have found this procedure to be quite 
heuristic and parameter dependent. Here, we have 
chosen an alternative way for determining &E 

which has been motivated by [6] .  Specifically, 
&E is determined as follows: 

which is simply the sum of the squared errors 
between the actual output values and the desired 
(target) output values. The second term depends 
on the size of the network and AWE is a weight- 
ing factor which determines the importance of the 

where 
The uPdation of AWE 

GE and &E are constants to be defined* 
place every 
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3. Evolving neural network connectivity 
Genetic algorithms operate iteratively on a 

population of structures, each one of which 
represents a candidate solution to the problem at 
hand. An important issue is how the architecture 
should be represented (encoded) into a structure 
(string of symbols) that can be handled by the 
genetic algorithm. Once an encoding scheme has 
been chosen, a number of networks are encoded 
to form the initial population. On each iteration, a 
new population is produced by first applying on 
the old population a number of genetic opera- 
tions. Then, each member of the population is 
evaluated through a fitness function, assuming 
first that each member is decoded into a legiti- 
mate network architecture. Members that per- 
formed badly are discarded, while members that 
performed well survive in future populations. 
Finally, the genetic algorithm converges to a 
population whose best member represents the 
solution the algorithm has found. 

The proposed approach tries to prune over- 
sized networks with the objective that the 
obtained pruned networks will always have a 
smaller size and a better generalization perfor- 
mance than their unpruned counterparts. Initially 
we chose a two-layer network (i.e., one hidden 
and one output layer), with enough nodes in the 
hidden layer to ensure convergence. The reason 
we have restricted ourselves to two-layer net- 
works is because of a very important theoretical 
result stating that a single hidden layer feed- 
forward network with arbitrary sigmoid hzdden 
layer activation functions can approximate arbi- 
trarily well an arbitrary mapping from one finite 
dimelzsional space to another [19]. After an over- 
sized network has been chosen, we encode it into 
a structure that can be handled by the genetic 
algorithm and we create P copies of it. P should 
be the number of members in a population 
(population size). Each of these copies is 
assigned a different set of parameter values. The 
parameters were chosen to be the initial weights, 
BwE, and wo. This choice was based on some 
preliminary experimental results which indicated 
that these parameters affect generalization and 
network size the most. New populations are gen- 
erated by applying the genetic operators of repro- 
duction, crossover and mutation. Then, the fitness 

of each member is measured by first decoding it 
into a network and then training it for a number 
of epochs using weight elimination in order to 
record the network’s performance in terms of 
generalization and size. 

Each network has its own parameter AWE 
which weighs generalization versus network size, 
its own generalization performance Gvals and its 
own average generalization error A,. This means 
that after some generations members in the same 
population should have totally different charac- 
teristics and this is the motivation for using 
different initial weights, p and w o  for each 
member of the initial population; by creating a 
large number of different size networks having 
various generalization performances, allows the 
algorithm to discover better solutions. It should 
be emphasized that pruning does not occur only 
because of weight elimination during evaluation 
but also because of the use of the crossover 
operator. Thus, the solutions obtained by combin- 
ing the genetic algorithm with weight elimination 
can not be replicated using weight elimination by 
itself. 

3.1. Network representation scheme 
A popular representation scheme has been 

proposed by Miller et. al. 1201, where the net- 
work architecture is represented as a connection 
matrix, which is mapped directly into a bit-string. 
Although this scheme seems to satisfy our 
requirements, it has the disadvantage that it 
creates very long strings. Here, we have adopted 
another approach proposed by Montana and 
Davis [21]. According to their approach, the 
weights and biases of a network are encoded in a 
straightforward way as a string of real numbers. 
Decoding is again straightforward. In addition, 
since certain connections are eliminated during 
evolution, each connection is not only associated 
with a weight value but also with a flag, indicat- 
ing if a connection exists (flag=l) or not (flag=O). 
Initially, all the flags are set to one. As new 
populations are produced as weight elimination 
takes place, some of the connections have their 
flags set to zero to indicate that they have been 
pruned. 
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3.2. Genetic operators 
The genetic operators which have been used 

in this work, are the most commonly used opera- 
tors: reproduction, crossover, and mutation. The 
purpose of the reproduction operator is to create 
a new population based on the evaluation 
(fitness) of tlhe members of the old population. 
Each member of the old population produces a 
number of exact copies such the the most fit 
members produce the most copies. Our imple- 
mentation uses the roulette wheel selection 
scheme described in [17]. Fitness scaling has 
been also implemented to avoid premature con- 
vergence. In addition to fitness scaling, two 
more heuristics have been incorporated in our 
implementation: the generation gap and the eli- 
tism strategy [17]. 

Crossover is applied after reproduction. 
Traditionally, crossover works as follows: pairs 
of members are selected at random and portions 
of them are exchanged to form new members. 
Here, we are using a modified crossover operator 
which is called the crossover-nodes operator (211. 
The idea is to swap groups of weights feeding 
into the same node. The reason is quite plausible; 
each node in the network contributes to the solu- 
tion the network tries to find. Thus, weights 
feeding into a node serve a role in finding a solu- 
tion for the problem at hand. Swapping weights 
arbitrarily mily not make a lot of sense while 
swapping groups of weights feeding into nodes is 
more sensible. 

The last genetic operator used is the muta- 
tion operator. This operator picks a member of 
the population randomly and changes it slightly. 
In its simplest form, mutation changes the value 
of a weight by adding a small random value. Fol- 
lowing our discussion regarding the crossover- 
nodes operator, the mutation operator we used in 
this study, does not change not single weights 
but groups ol weights feeding into a same node. 
This modified operator which we call the 
mutate-nodes operator, has also been used in 
other studies [21], illustrating good performance. 

3.3. Fitness evaluation 

The most commonly used approach to 
evaluate a nctwork’s performance is to train the 
network represented by a member in the popula- 

tion and record the network’s mean square error. 
However, this is quite inefficient for our purpose, 
since it does not account for the network’s gen- 
eralization performance and size. To perform an 
evaluation based on these two issues, we have 
defined a fitness function having the following 
form: 

The first term (EmtJ,) accounts for gen- 
eralization while the second term accounts for the 
network size. kA is a weighting factor which 
controls the importance of the two terms. If A,, 
is very small, the fitness of a member is deter- 
mined by its generalization performance only. 
However, when )LGA is large, both generalization 
and size influence the fitness of a member. The 
value of the weighting factor &A is determined 
adaptively, in a similar way h,, is determined in 
weight elimination. Specifically, &A is deter- 
mined as follows: 

where GA and PGA are constants to be defined. - 
It is clear from the definition of the fitness 

function that reproduction favors members with 
good generalization performance and small net- 
work size. In early generations, network size 
does not play an important role in reproduction 
and the fittest members are the members which 
generalize best. However, in future generations 
both network size and generalization affect repro- 
duction. For an estimation of E,, gen, cross- 
validation is used again. Recalling ou; discussion 
in section 2, E ,  gen will be the generalization 
performance ove; the validation set, that is, 
EnetJe,, = GVaI. is defined to be the number 
of existing connections (flag=l) in a network 
belonging to a current population over the total 
number of connections in the first population. 
Both E,,, and take values between 0 
and 1. 

4. Simulations and results 
In order to evaluate our approach, a number 

of preliminary experiments has been performed 
using an artificial and a real database. For each 
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problem, data was divided into a training, a vali- 
dation, and a test set. Three approaches have 
been compared: original back-propagation, weight 
elimination and genetic algorithm coupled with 
weight elimination. In all the simulations per- 
formed, the learning rate and momentum were 
both chosen equal to 0.1. For each problem, we 
chose an initial architecture (two-layer) and 
trained 20 different networks with different initial 
weights. The population size P in the genetic 
algorithm approach was also set equal to 20. The 
generation gap was set equal to 1.5 at the first 
population and its value was allowed to increase 
linearly during successive generations and reach 
the value 1. The PGA was set equal to 40, while y 
was set equal to 0.9 in all the simulations. A,, 
and A,, GA were both set to 1. The same secof 
initial weights, pwE and w o  was used in all the 
approaches to ensure comparable results. 

- 

L-- I 1-4 

4.1. Numbers database 
This is an artificial database which consists 

of noisy versions of machine printed numbers, 
digitized in a 7x9 grid. There are totally 10 
classes. The training set consists of 150 exam- 
ples, the validation set of 50 examples and the 
test set of 150 examples. The architecture chosen 
for this experiment was a fully connected hvo- 
layer network with 63 nodes in the input layer, 
30 nodes in the hidden layer and 10 nodes in the 
output layer, The total number of weights and 
biases for this architecture is 2230. Table 1 illus- 
trates the average, best, and worst performance in 
terms of generalization on the training and test 

sets, as well as in terms of network size. 

4.2. Ionosphere database 
This database consists of radar data. It con- 

tains 2 classes and a total of 351 instances. The 
number of attributes is 34, all of which are real 
numbers in the interval [0,1]. The database is dis- 
tributed into two different files, a training file 
including 200 instances and a testing file includ- 
ing 151 instances. In order to create a validation 
set also, we split the training file into two 
different files. The first consisted of 200 exam- 
ples and was our actual training set, and the 
second consisted of 31 examples and was our 
validation set. The architecture chosen for this 
experiment was a fully connected, two-layer net- 
work with 34 nodes in the input layer, 30 nodes 
in the hidden layer and 2 nodes in the output 
layer. The total number of weights and biases for 
this architecture is 1112. Table 2 illustrates the 
average, best, and worst performance in terms of 
generalization on the training and test sets, as 
well as in terms of network size. 

5. Conclusions 
In this paper, a new approach was intro- 

duced where a genetic algorithm was coupled 
with weight elimination. The purpose was to 
improve generalization by reducing network size. 
Preliminary results indicate the feasibility of this 
approach. However, we are currently performing 
a large number of experiments, using many real 
databases, in order to further validate our 
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approach. 
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