
IMPROVING GENERALIZATION BY USING GENETIC
ALGORITHMS TO DETERMINE THE NEURAL NETWORK SIZE

George Bebis and Miclurel Georgwpoulos

Department of Electrical & Computer Engineering
University of Central Florida

P.O. Box 25000, Orlando, FL 32816, U.S.A.
e-mail: {geb,mng}.engr.ucf.edu

Abstract

Recent theoretical results support that decreasing the number of free parameters in a neural network (i.e.,
weights) can improve generalization. The importance of these results has triggered the development of
many approaches which try to determine an "appropriate" network size for a given problem. Although it
has been demonstrated that most of the approaches manage to find small size networks which solve the
problem at hand, it is quite remarkable that the generalization capabilities of these networks have not been
explored thoroughly. In this paper, we propose the coupling of genetic algorithms and weight pruning
with the objective of both reducing network size and improving generalization. The innovation of our ap-
proach relies on the use of a fitness function which uses an adaptive parameter to encourage the reproduc-
tion of networks having good generalization performance and a relatively small size.

1. Introduction
Network size in the case of layered, feed-

forward, neural networks depends on the number
of layers and the number of nodes per layer but
usually is expressed in terms of the number of
connections in the network. In general, network
size affects network complexity, and learning
time, but most importantly, it affects the generali-
zation capabilities of the network; that is, its abil-
ity to produce accurate results on data outside its
training set [1],[2]. A network having a structure
simpler than necessary cannot give good results
even for patterns included in its training set. On
the other hand, a more complicated than neces-
sary structure, "overfits" the training data, that is,
it performs nicely on patterns included in the
training set but performs very poorly on unk-
nown patterns.

Major emphasis has been given in the last
few years in the development of techniques
which try to improve generalization by modifying
not only the connection weights but also the net-
work structure as training proceeds. These tech-
niques can be divided into three main categories:
pruning, [3]-[7], constructive [8],[9], and weight
sharing [lO],[ll]. Although one of the most

important reason for modifying the network
architecture is to improve generalization, most of
the existing approaches have not emphasized this
issue. In most cases, the feasibility of an
approach is illustrated showing results on net-
work size reduction and convergence speed,
while less or no emphasis has been given to the
generalization issue [3]- [5], [SI [9]. Actually, in
some studies where generalization has been
addressed, improvements were observed using
only artificial data [6],[12],[13], while no
significant generalization improvement or even
worst generalization has been reported in other
studies where real data were used [14]-[16]. In
this paper, our focus is on the area of weight
pruning techniques.

Weight pruning techniques are very sensi-
tive to the selection of certain parameters which
determine when pruning should start and when it
should stop. If pruning starts too early, the net-
work might not be able to learn the desired map-
ping. On the other hand, starting pruning late
might waste training time and the network might
start memorizing the training set. Also, if pruning
stops early, we might not be able to sufficiently
prune the network and this might lead to poor
generalization again. Finally, if pruning does not

392

http://geb,mng}.engr.ucf.edu

stop at the right time, then the network might be
able to fit the training data satisfactorily, but it
might not be: able to generalize well. Usually,
determining appropriate pruning parameter values
to control the: beginning and end of the pruning
process is done by trial and error.

In this paper, we propose the coupling of
genetic algorithms [171 and weight pruning.
Research on combining genetic algorithms and
neural networks has attracted a lot of attention
lately [18]. T,he weight elimination technique [7],
a representative weight pruning technique and the
most general of weight decay approaches has
been chosen 1.0 be coupled with the genetic algo-
rithm. The purpose is not only to prune oversized
networks but also to improve generalization and
to make pruning less sensitive to the selection of
the pruning parameter values. The innovation of
our approach relies on the use of a fitness func-
tion which takes into consideration both the net-
work size and the generalization performance.
During the generation of new genetic popula-
tions, an adaptive parameter weighs appropriately
the importance of network size versus generaliza-
tion, encouraging the reproduction of networks
having good generalization capabilities and small
size.

The organization of the paper is as follows:
Section 2 reviews the weight elimination tech-
nique. Sectioin 3 discusses the genetic algorithm
approach. Th.e databases used and preliminary
experimental results obtained are described in
Section 4. Finally, our conclusions are given in
Section 5.

2. Determining network size using weight
elimination

Weight elimination minimizes the following
modified error function:

wij "/w 0"
(targetk - oNutputk l2 i- kwE E

k i 7 j 1 + wi;2/w:

The first term is the original error function

second term with respect to the first. The choice
of wo determines the number and magnitude of
weights. If wo is chosen to be small, the algo-
rithm converges to a solution having a few large
weights. On the other hand, if wo is chosen to be
large, a solution is obtained having many small
weights.

An important issue to be addressed is when
to start pruning. Specifically, we start removing
connections only when the generalization perfor-
mance of the network is satisfactory. A common
way of testing generalization, is using cross-
validation and this the approach used here [l].
Defining the generalization performance G , as
the ratio of correctly classified patterns from the
validation set over the total number of patterns in
the validation set, we start removing connections
when GVal r T , where T is a threshold to be
defined. A weight wi; is removed only if

Another important issue to be addressed is
when to stop training and as a consequence,
pruning. A robust way is using the average gen-
eralization error A, defined as follows:

IW,l < IWJ.

where n denotes the epoch at which A,, is com-
puted, A. is set to 1, and y is a constant, to be
chosen relatively close to 1. If A,, keeps decreas-
ing, we continue training and pruning, otherwise,
we stop. The update of Gval and A, takes place
every epoch.

Weigend et. al. [7] have proposed an adap-
tive procedure for determining the parameter AWE.
Initially, Am is set to zero. Then, it increases,
decreases, or stays the same according to certain
criteria. We have found this procedure to be quite
heuristic and parameter dependent. Here, we have
chosen an alternative way for determining &E

which has been motivated by [6] . Specifically,
&E is determined as follows:

which is simply the sum of the squared errors
between the actual output values and the desired
(target) output values. The second term depends
on the size of the network and AWE is a weight-
ing factor which determines the importance of the

where
The uPdation of AWE

GE and &E are constants to be defined*
place every

393

3. Evolving neural network connectivity
Genetic algorithms operate iteratively on a

population of structures, each one of which
represents a candidate solution to the problem at
hand. An important issue is how the architecture
should be represented (encoded) into a structure
(string of symbols) that can be handled by the
genetic algorithm. Once an encoding scheme has
been chosen, a number of networks are encoded
to form the initial population. On each iteration, a
new population is produced by first applying on
the old population a number of genetic opera-
tions. Then, each member of the population is
evaluated through a fitness function, assuming
first that each member is decoded into a legiti-
mate network architecture. Members that per-
formed badly are discarded, while members that
performed well survive in future populations.
Finally, the genetic algorithm converges to a
population whose best member represents the
solution the algorithm has found.

The proposed approach tries to prune over-
sized networks with the objective that the
obtained pruned networks will always have a
smaller size and a better generalization perfor-
mance than their unpruned counterparts. Initially
we chose a two-layer network (i.e., one hidden
and one output layer), with enough nodes in the
hidden layer to ensure convergence. The reason
we have restricted ourselves to two-layer net-
works is because of a very important theoretical
result stating that a single hidden layer feed-
forward network with arbitrary sigmoid hzdden
layer activation functions can approximate arbi-
trarily well an arbitrary mapping from one finite
dimelzsional space to another [19]. After an over-
sized network has been chosen, we encode it into
a structure that can be handled by the genetic
algorithm and we create P copies of it. P should
be the number of members in a population
(population size). Each of these copies is
assigned a different set of parameter values. The
parameters were chosen to be the initial weights,
BwE, and wo. This choice was based on some
preliminary experimental results which indicated
that these parameters affect generalization and
network size the most. New populations are gen-
erated by applying the genetic operators of repro-
duction, crossover and mutation. Then, the fitness

of each member is measured by first decoding it
into a network and then training it for a number
of epochs using weight elimination in order to
record the network’s performance in terms of
generalization and size.

Each network has its own parameter AWE
which weighs generalization versus network size,
its own generalization performance Gvals and its
own average generalization error A,. This means
that after some generations members in the same
population should have totally different charac-
teristics and this is the motivation for using
different initial weights, p and w o for each
member of the initial population; by creating a
large number of different size networks having
various generalization performances, allows the
algorithm to discover better solutions. It should
be emphasized that pruning does not occur only
because of weight elimination during evaluation
but also because of the use of the crossover
operator. Thus, the solutions obtained by combin-
ing the genetic algorithm with weight elimination
can not be replicated using weight elimination by
itself.

3.1. Network representation scheme
A popular representation scheme has been

proposed by Miller et. al. 1201, where the net-
work architecture is represented as a connection
matrix, which is mapped directly into a bit-string.
Although this scheme seems to satisfy our
requirements, it has the disadvantage that it
creates very long strings. Here, we have adopted
another approach proposed by Montana and
Davis [21]. According to their approach, the
weights and biases of a network are encoded in a
straightforward way as a string of real numbers.
Decoding is again straightforward. In addition,
since certain connections are eliminated during
evolution, each connection is not only associated
with a weight value but also with a flag, indicat-
ing if a connection exists (flag=l) or not (flag=O).
Initially, all the flags are set to one. As new
populations are produced as weight elimination
takes place, some of the connections have their
flags set to zero to indicate that they have been
pruned.

394

3.2. Genetic operators
The genetic operators which have been used

in this work, are the most commonly used opera-
tors: reproduction, crossover, and mutation. The
purpose of the reproduction operator is to create
a new population based on the evaluation
(fitness) of tlhe members of the old population.
Each member of the old population produces a
number of exact copies such the the most fit
members produce the most copies. Our imple-
mentation uses the roulette wheel selection
scheme described in [17]. Fitness scaling has
been also implemented to avoid premature con-
vergence. In addition to fitness scaling, two
more heuristics have been incorporated in our
implementation: the generation gap and the eli-
tism strategy [17].

Crossover is applied after reproduction.
Traditionally, crossover works as follows: pairs
of members are selected at random and portions
of them are exchanged to form new members.
Here, we are using a modified crossover operator
which is called the crossover-nodes operator (211.
The idea is to swap groups of weights feeding
into the same node. The reason is quite plausible;
each node in the network contributes to the solu-
tion the network tries to find. Thus, weights
feeding into a node serve a role in finding a solu-
tion for the problem at hand. Swapping weights
arbitrarily mily not make a lot of sense while
swapping groups of weights feeding into nodes is
more sensible.

The last genetic operator used is the muta-
tion operator. This operator picks a member of
the population randomly and changes it slightly.
In its simplest form, mutation changes the value
of a weight by adding a small random value. Fol-
lowing our discussion regarding the crossover-
nodes operator, the mutation operator we used in
this study, does not change not single weights
but groups ol weights feeding into a same node.
This modified operator which we call the
mutate-nodes operator, has also been used in
other studies [21], illustrating good performance.

3.3. Fitness evaluation

The most commonly used approach to
evaluate a nctwork’s performance is to train the
network represented by a member in the popula-

tion and record the network’s mean square error.
However, this is quite inefficient for our purpose,
since it does not account for the network’s gen-
eralization performance and size. To perform an
evaluation based on these two issues, we have
defined a fitness function having the following
form:

The first term (EmtJ,) accounts for gen-
eralization while the second term accounts for the
network size. kA is a weighting factor which
controls the importance of the two terms. If A,,
is very small, the fitness of a member is deter-
mined by its generalization performance only.
However, when)LGA is large, both generalization
and size influence the fitness of a member. The
value of the weighting factor &A is determined
adaptively, in a similar way h,, is determined in
weight elimination. Specifically, &A is deter-
mined as follows:

where GA and PGA are constants to be defined. -
It is clear from the definition of the fitness

function that reproduction favors members with
good generalization performance and small net-
work size. In early generations, network size
does not play an important role in reproduction
and the fittest members are the members which
generalize best. However, in future generations
both network size and generalization affect repro-
duction. For an estimation of E,, gen, cross-
validation is used again. Recalling ou; discussion
in section 2, E , gen will be the generalization
performance ove; the validation set, that is,
EnetJe,, = GVaI. is defined to be the number
of existing connections (flag=l) in a network
belonging to a current population over the total
number of connections in the first population.
Both E,,, and take values between 0
and 1.

4. Simulations and results
In order to evaluate our approach, a number

of preliminary experiments has been performed
using an artificial and a real database. For each

39 5

problem, data was divided into a training, a vali-
dation, and a test set. Three approaches have
been compared: original back-propagation, weight
elimination and genetic algorithm coupled with
weight elimination. In all the simulations per-
formed, the learning rate and momentum were
both chosen equal to 0.1. For each problem, we
chose an initial architecture (two-layer) and
trained 20 different networks with different initial
weights. The population size P in the genetic
algorithm approach was also set equal to 20. The
generation gap was set equal to 1.5 at the first
population and its value was allowed to increase
linearly during successive generations and reach
the value 1. The PGA was set equal to 40, while y
was set equal to 0.9 in all the simulations. A,,
and A,, GA were both set to 1. The same secof
initial weights, pwE and w o was used in all the
approaches to ensure comparable results.

-

L-- I 1-4

4.1. Numbers database
This is an artificial database which consists

of noisy versions of machine printed numbers,
digitized in a 7x9 grid. There are totally 10
classes. The training set consists of 150 exam-
ples, the validation set of 50 examples and the
test set of 150 examples. The architecture chosen
for this experiment was a fully connected hvo-
layer network with 63 nodes in the input layer,
30 nodes in the hidden layer and 10 nodes in the
output layer, The total number of weights and
biases for this architecture is 2230. Table 1 illus-
trates the average, best, and worst performance in
terms of generalization on the training and test

sets, as well as in terms of network size.

4.2. Ionosphere database
This database consists of radar data. It con-

tains 2 classes and a total of 351 instances. The
number of attributes is 34, all of which are real
numbers in the interval [0,1]. The database is dis-
tributed into two different files, a training file
including 200 instances and a testing file includ-
ing 151 instances. In order to create a validation
set also, we split the training file into two
different files. The first consisted of 200 exam-
ples and was our actual training set, and the
second consisted of 31 examples and was our
validation set. The architecture chosen for this
experiment was a fully connected, two-layer net-
work with 34 nodes in the input layer, 30 nodes
in the hidden layer and 2 nodes in the output
layer. The total number of weights and biases for
this architecture is 1112. Table 2 illustrates the
average, best, and worst performance in terms of
generalization on the training and test sets, as
well as in terms of network size.

5. Conclusions
In this paper, a new approach was intro-

duced where a genetic algorithm was coupled
with weight elimination. The purpose was to
improve generalization by reducing network size.
Preliminary results indicate the feasibility of this
approach. However, we are currently performing
a large number of experiments, using many real
databases, in order to further validate our

396

approach.

References

[l] D. Hush and B. Horne, "Progress in super-
vised neural networks", IEEE Signal Pro-
cessing Magazine, pp. 8-39, Jan. 1993.

[2] G. Bebis and M. Georgiopoulos, "Feed-
forward neural networks: why network size
is so innportant", IEEE Potentials, pp. 27-
31, OctoberDiovember 1994.

[3] E. Karnin, "A simple procedure for pruning
back-propagation trained neural networks",
IEEE Transactions on Neural Networks,
vol. 1, no. 2, pp. 239-242, 1990.

[4] M. Mozer and P. Smolensky, "Skeletoniza-
tion: a technique for trimming the fat from
a network via relevance assessment", in
Advances in Neural Information Processing
Systems I , pp. 105-115, 1989.

[5] Y. Chauvin, "A back-propagation algorithm
with o,ptimal use of hidden units", in
Advanct?s in Neural Information Processing
Systems I , pp. 519-526, 1989.

[6] C. Ji, R. Snapp, and D. Psaltis, "Generalizing
smoothing constraints from discrete sam-
ples", Neural Computation, vol. 2, pp.

[7] A. Weigend, D. Rumelhart and B. Huberman,
"Generadization by weight elimination with
application to forecasting", in Advances in
Neural Information Processing Systems 3,

[8] S. Fahlman and C. Lebiere, "The Cascade-
Correlation learning architecture", in
Advances in Neural Information Processing
Systems 2, pp. 524-532, 1990.

[9] M. Frean, "The Upstart algorithm: a method
for constructing and training feed-forward
networks", Neural Computation, vol. 2, pp.

[lo] Y . Le Cun, B. Boser, J. Denker, D. Hender-
son. R. Howard. W. Hubbard, and L.
Jackel, "Back-propagation applied to
handwritten zip code recognition", Neural
Computation, vol. 1, pp. 541-551, 1989.

188-197, 1990.

pp. 875-882, 1991.

198-200, 1990.

[l l] S. Nolwan and G. Hinton, "Simplifying
neural networks by soft weight sharing",
Neural Computation, vol. 4, no. 4, pp.

[121 H. Thodberg, "Improving generalization of
neural networks through pruning", Znterna-
tional Journal of Neural Systems, vol. 1,
no. 4, pp. 317-326, 1991.

[13] Y. Hirose, K. Yamashita, and S. Hijiya,
"Back-propagation algorithm which varies
the number of hidden units" Neural Net-
works, vol. 4, pp. 61-66, 1991.

[14] J. Sietsma and R. DOW, "Creating artificial
neural networks that gcneralize", Neural
Networks, vol. 4, pp. 67-79, 1991.

[15] Y. Yang and V. Honavar, "Experiments
with the cascade-correlation algorithm",
Technical Report, Dept. of Computer Sci-
ence, Iowa State University, Ames, IA.

[16] R. Kamimura and S. Nakanishi, "Weight-
decay as a process of redundancy reduc-
tion", in Proceedings of World Congress on
Neural Networks, vol. 111, pp. 486-489,
1994.

[17] D. Goldberg, Genetic algorithms in search,
optimization, and machine learning,
Addison-Wesley, Reading, MA., 1989.

[18] X. Yao, "A review of evolutionary artificial
neural networks", appeared in the Interna-
twnal Joumal of Intelligent Systems.

[19] K. Hornik and M. Stinchombe, "Multilayer
feed-forward networks are universal approx-
imators", in f2Artificial Neural Networks:
Approximation and Learning Theory, H.
White et. al., Eds., Blackwell press, Oxford,
1992.

[20] G. Miller, P. Todd and S . Hegde, "Design-
ing Neural Networks using Genetic Algo-
rithms", Third Internatwnal Conference on
Genetic Algorithms, pp. 379-384.

[21] D. Montana and L. Davis, "Training feed-
forward neural networks using genetic algo-
rithms", in Proceedings of the Eleventh
Internatwnal Joint Conference on Artificial
Intelligence, pp. 762-767, 1989.

473-493, 19%.

397

